direct product, p-group, abelian, monomial
Aliases: C22×C32, SmallGroup(128,988)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22×C32 |
C1 — C22×C32 |
C1 — C22×C32 |
Generators and relations for C22×C32
G = < a,b,c | a2=b2=c32=1, ab=ba, ac=ca, bc=cb >
Subgroups: 60, all normal (10 characteristic)
C1, C2, C2, C4, C4, C22, C8, C8, C2×C4, C23, C16, C16, C2×C8, C22×C4, C32, C2×C16, C22×C8, C2×C32, C22×C16, C22×C32
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C16, C2×C8, C22×C4, C32, C2×C16, C22×C8, C2×C32, C22×C16, C22×C32
(1 127)(2 128)(3 97)(4 98)(5 99)(6 100)(7 101)(8 102)(9 103)(10 104)(11 105)(12 106)(13 107)(14 108)(15 109)(16 110)(17 111)(18 112)(19 113)(20 114)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 121)(28 122)(29 123)(30 124)(31 125)(32 126)(33 71)(34 72)(35 73)(36 74)(37 75)(38 76)(39 77)(40 78)(41 79)(42 80)(43 81)(44 82)(45 83)(46 84)(47 85)(48 86)(49 87)(50 88)(51 89)(52 90)(53 91)(54 92)(55 93)(56 94)(57 95)(58 96)(59 65)(60 66)(61 67)(62 68)(63 69)(64 70)
(1 68)(2 69)(3 70)(4 71)(5 72)(6 73)(7 74)(8 75)(9 76)(10 77)(11 78)(12 79)(13 80)(14 81)(15 82)(16 83)(17 84)(18 85)(19 86)(20 87)(21 88)(22 89)(23 90)(24 91)(25 92)(26 93)(27 94)(28 95)(29 96)(30 65)(31 66)(32 67)(33 98)(34 99)(35 100)(36 101)(37 102)(38 103)(39 104)(40 105)(41 106)(42 107)(43 108)(44 109)(45 110)(46 111)(47 112)(48 113)(49 114)(50 115)(51 116)(52 117)(53 118)(54 119)(55 120)(56 121)(57 122)(58 123)(59 124)(60 125)(61 126)(62 127)(63 128)(64 97)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128)
G:=sub<Sym(128)| (1,127)(2,128)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,65)(60,66)(61,67)(62,68)(63,69)(64,70), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,65)(31,66)(32,67)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)>;
G:=Group( (1,127)(2,128)(3,97)(4,98)(5,99)(6,100)(7,101)(8,102)(9,103)(10,104)(11,105)(12,106)(13,107)(14,108)(15,109)(16,110)(17,111)(18,112)(19,113)(20,114)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,121)(28,122)(29,123)(30,124)(31,125)(32,126)(33,71)(34,72)(35,73)(36,74)(37,75)(38,76)(39,77)(40,78)(41,79)(42,80)(43,81)(44,82)(45,83)(46,84)(47,85)(48,86)(49,87)(50,88)(51,89)(52,90)(53,91)(54,92)(55,93)(56,94)(57,95)(58,96)(59,65)(60,66)(61,67)(62,68)(63,69)(64,70), (1,68)(2,69)(3,70)(4,71)(5,72)(6,73)(7,74)(8,75)(9,76)(10,77)(11,78)(12,79)(13,80)(14,81)(15,82)(16,83)(17,84)(18,85)(19,86)(20,87)(21,88)(22,89)(23,90)(24,91)(25,92)(26,93)(27,94)(28,95)(29,96)(30,65)(31,66)(32,67)(33,98)(34,99)(35,100)(36,101)(37,102)(38,103)(39,104)(40,105)(41,106)(42,107)(43,108)(44,109)(45,110)(46,111)(47,112)(48,113)(49,114)(50,115)(51,116)(52,117)(53,118)(54,119)(55,120)(56,121)(57,122)(58,123)(59,124)(60,125)(61,126)(62,127)(63,128)(64,97), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128) );
G=PermutationGroup([[(1,127),(2,128),(3,97),(4,98),(5,99),(6,100),(7,101),(8,102),(9,103),(10,104),(11,105),(12,106),(13,107),(14,108),(15,109),(16,110),(17,111),(18,112),(19,113),(20,114),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,121),(28,122),(29,123),(30,124),(31,125),(32,126),(33,71),(34,72),(35,73),(36,74),(37,75),(38,76),(39,77),(40,78),(41,79),(42,80),(43,81),(44,82),(45,83),(46,84),(47,85),(48,86),(49,87),(50,88),(51,89),(52,90),(53,91),(54,92),(55,93),(56,94),(57,95),(58,96),(59,65),(60,66),(61,67),(62,68),(63,69),(64,70)], [(1,68),(2,69),(3,70),(4,71),(5,72),(6,73),(7,74),(8,75),(9,76),(10,77),(11,78),(12,79),(13,80),(14,81),(15,82),(16,83),(17,84),(18,85),(19,86),(20,87),(21,88),(22,89),(23,90),(24,91),(25,92),(26,93),(27,94),(28,95),(29,96),(30,65),(31,66),(32,67),(33,98),(34,99),(35,100),(36,101),(37,102),(38,103),(39,104),(40,105),(41,106),(42,107),(43,108),(44,109),(45,110),(46,111),(47,112),(48,113),(49,114),(50,115),(51,116),(52,117),(53,118),(54,119),(55,120),(56,121),(57,122),(58,123),(59,124),(60,125),(61,126),(62,127),(63,128),(64,97)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128)]])
128 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 8A | ··· | 8P | 16A | ··· | 16AF | 32A | ··· | 32BL |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 16 | ··· | 16 | 32 | ··· | 32 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
128 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 | C16 | C32 |
kernel | C22×C32 | C2×C32 | C22×C16 | C2×C16 | C22×C8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 12 | 4 | 24 | 8 | 64 |
Matrix representation of C22×C32 ►in GL3(𝔽97) generated by
96 | 0 | 0 |
0 | 96 | 0 |
0 | 0 | 96 |
1 | 0 | 0 |
0 | 96 | 0 |
0 | 0 | 96 |
20 | 0 | 0 |
0 | 70 | 0 |
0 | 0 | 52 |
G:=sub<GL(3,GF(97))| [96,0,0,0,96,0,0,0,96],[1,0,0,0,96,0,0,0,96],[20,0,0,0,70,0,0,0,52] >;
C22×C32 in GAP, Magma, Sage, TeX
C_2^2\times C_{32}
% in TeX
G:=Group("C2^2xC32");
// GroupNames label
G:=SmallGroup(128,988);
// by ID
G=gap.SmallGroup(128,988);
# by ID
G:=PCGroup([7,-2,2,2,-2,-2,-2,-2,56,80,102,124]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^32=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations